Search results for "general [Kuiper belt]"
showing 10 items of 26518 documents
A half-metallic half-Heusler alloy having the largest atomic-like magnetic moment at optimized lattice constant
2016
For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constant of 5.803Å, and has the maximum atomic-like magn…
45° sign switching of effective exchange bias due to competing anisotropies in fully epitaxial Co3FeN/MnN bilayers
2017
We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45° period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully …
Determination of fine magnetic structure of magnetic multilayer with quasi antiferromagnetic layer by using polarized neutron reflectivity analysis
2020
We carried out polarized neutron reflectivity (PNR) analysis to determine the fine magnetic structure of magnetic multilayers with quasi-antiferromagnetic (quasi-AFM) layers realized by 90-deg coupling using two Co90Fe10 layers, and quantitatively evaluated the magnetization of quasi-AFM layers. Two types of samples with different buffer layers, Ru buffer and a NiFeCr buffer, were investigated and the average angles between the respective magnetization of the two Co90Fe10 layers were estimated to be +/− 39 degrees and +/− 53 degrees. In addition, less roughness was found in the NiFeCr buffer sample resulting stronger 90-deg coupling. A perfect quasi-AFM is expected to be realized by a flat …
Thermal- and photo-induced spin crossover in the 1D coordination polymer [Fe(4-tBupy)3][Au(CN)2]2 (4-tBupy = 4-tert-butylpyridine)
2021
Reaction of the unidentate pyridine ligand containing a bulky t-butyl substituent with Fe2+ and [Au(CN)2]− affords a new type of spin crossover (SCO) coordination polymer in the 1D compound [Fe(4-tBupy)3][Au(CN)2]2⋅0.5H2O (1), which is formed by chains of Fe(II) complexes linked through bridging [Au(CN)2]− with three terminal 4-tBupy and one monodentate [Au(CN)2]− ligands completing the octahedral coordination around Fe(II). Longer reaction times led to the minor products [Fe(4-tBupy)2][Au(CN)2]2 (2), which presents a 2D structure more similar to that found in the other SCO compounds based on [Au(CN)2]−, and the 1D compound [Fe(4-tBupy)2(MeOH)][Au(CN)2]2 (3), in which one of the three termi…
Experimental Equipment for Studying the Residual Stresses Developed During High Temperature Reactions by X-Ray Diffraction
1996
This paper describes a device dedicated to studyng, by X-ray diffraction the residual stresses developed on surface samples as a function of temperature and atmosphere conditions. The setup consists of : a.) an horizontal axis goniometer which allows the programmed positionning of the sealed X-ray source and of the linear detector. b.) a high temperature controlled atmosphere chamber Particular attention has been paid to the thermal stability up to 1200°C and the accurate position on the sample.
High quality epitaxial Mn 2 Au (001) thin films grown by molecular beam epitaxy
2020
The recently discovered phenomenon of Neel spin–orbit torque in antiferromagnetic Mn2Au [Bodnar et al., Nat. Commun. 9, 348 (2018); Meinert et al., Phys. Rev. Appl. 9, 064040 (2018); Bodnar et al., Phys. Rev. B 99, 140409(R) (2019)] has generated huge interest in this material for spintronics applications. In this paper, we report the preparation and characterization of high quality Mn2Au thin films by molecular beam epitaxy and compare them with magnetron sputtered samples. The films were characterized for their structural and morphological properties using reflective high-energy electron diffraction, x-ray diffraction, x-ray reflectometry, atomic force microscopy, and temperature dependen…
Structure and dielectric properties of Na0.5Bi0.5TiO3-CaTiO3 solid solutions
2016
Despite wide studies of Na0.5Bi0.5TiO3, structure of this material and its connection with the observed physical properties still raise numerous questions due to mutually contradicting results obtained. Here, structure and dielectric properties of poled and unpoled Na0.5Bi0.5TiO3-CaTiO3 solid solutions are studied, projecting the obtained concentration dependence of structure and dielectric properties on pure Na0.5Bi0.5TiO3 as the end member of this material group. X-ray diffraction patterns for Na0.5Bi0.5TiO3-CaTiO3 solid solutions reveal dominating of an orthorhombic Pnma phase, even for the compositions approaching the end composition (Na0.5Bi0.5TiO3), whereas structure of pure Na0.5Bi0.…
Correlative study of structural and optical properties of ZnSe under severe plastic deformation
2019
The effect of plastic deformation on the optical and structural properties of ZnSe crystals has been investigated. The optical properties have been monitored by cathodoluminescence measurements as a function of the deformation degree. Remarkable differences in the defect-related emissions from the most severely deformed areas have been encountered. Deformation of the crystal lattice of ZnSe, associated with slip phenomena, has been studied by means of Electron Backscattered Diffraction and micro-Raman spectroscopy. The relation between the deformation and the optical properties of the ZnSe crystals has been described.
Intrinsic nanostructures on the (001) surface of strontium titanate at low temperatures
2020
Atomically smooth (001) surfaces of SrTiO3 cut from the high-quality single crystals at two different miscut angles 0.9 and 7.0 deg between the real flat surfaces and crystallographic planes (001) were analyzed by means of the reflection high energy electron diffraction (RHEED) method from the room down to liquid helium temperatures. The diffraction patterns typical of the RHEED geometry close to ideal for a small miscut angle and those exhibiting distinct features of the specific periodicity associated with regular steps, which form due to the larger miscut angle, are presented. The surface symmetry and energetics were shown to impose differences in lattice parameters in parallel to a surf…
A consistent path for phase determination based on transmission electron microscopy techniques and supporting simulations.
2018
This work addresses aspects for the analysis of industrial relevant materials via transmission electron microscopy (TEM). The complex phase chemistry and structural diversity of these materials require several characterization techniques to be employed simultaneously; unfortunately, different characterization techniques often lack connection to yield a complete and consistent picture. This paper describes a continuous path, starting with the acquisition of 3D diffraction data - alongside classical high-resolution imaging techniques - and linking the structural characterization of hard metal industrial samples with energy-loss fine-structure simulations, quantitative electron energy-loss (EE…